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1

NUMBERS

Summary

First we consider what are the basic notions of mathematics,
and emphasise the need for mathematicians to agree on a common
starting point for their deductions. Peano’s axioms for the natural num-
bers are listed. Starting with a system of numbers satisfying Peano’s
axioms, we construct by algebraic methods the systems of integers,
rational numbers, real numbers and complex numbers. At each stage it
is made clear what properties the system constructed has and how each
number system is contained in the next one. In the last section there is
a discussion of decimal representation of rational numbers and real
numbers.

The reader is presumed to have some experience of working with sets

and functions, and to be familiar with the ideas of bijection, equivalence
relation and equivalence class.

1.1 Natural numbers and integers

It is fashionable nowadays at all levels of study from elementary
school to university research, to regard the notion of set as the basic
notion which underlies all of mathematics. The standpoint of this book
is that the idea of set is something that no modern mathematician can
be without, but that it is first and foremost a too! for the mathematician,
a helpful way of dealing with mathematical entities and deductions. As
such, of course, it becomes also an object of study by mathematics. It
is inherent in the nature of mathematics that it includes the study of the
methods used in the subject; this is the cause of much difficulty and
misunderstanding, since it apparently involves a vicious circle. The
trouble is that most people (mathematicians included) try to regard
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mathematics as a whole — a logical system for proving true theorems
based on indubitable principles. The present author believes that this is
a misleading picture. Mathematics is rather a mixture of intuition,
analogy and logic -~ a body of accepted knowledge based on perceived
reality, together with tools and techniques for drawing analogies, making
conjectures and providing logical justification for conclusions drawn.

The fundamental notions of mathematics now are the same as they
were a hundred years ago, namely, numbers or, to be more specific, the
number systems. Modern abstract mathematics (with the exception,
perhaps, of geometry and topology) is based almost entirely on analogies
drawn with properties of numbers. Here are some simple examples. The
algebraic theory of fields arises from a generalisation of the properties
of addition and multiplication of numbers. Real analysis is just the study
of functions from real numbers to real numbers. Functional analysis
applies the methods of algebra (themselves derived from methods used
in concrete numerical situations) to mathematical systems which are
generalisations of three-dimensional physical space (which can be rep-
resented, of course, via coordinate geometry, by means of ordered triples
of real numbers).

Our knowledge of the number systems derives from our perception
of the physical world. We count and we measure, and the origins of
mathematics lie in these activities. Modern methods can help in writing
down and working out properties of numbers and in clarifying relation-
ships between these properties. Indeed, this process has reached an
advanced stage. Most mathematicians now agree on what are the prin-
ciples which it is proper to use in order to characterise the number
systems. This is very significant, for it provides a common starting point
for logical deductions. If all mathematicians based their deductions on
their own personal intuitions then communication would be very difficult
and the subject would not be very coherent. One purpose of this book
is to expound and explain the common starting point. In the first chapter
we deal with the number systems out of which mathematics develops,
and in subsequent chapters we shall investigate some of the tools (notably
set theory) and try to explain what modern ‘foundations of mathematics’
is all about.

Counting is the first mathematical activity that we learn. We learn to
associate the objects in a collection with words (numbers) which mark
them off in a sequence and finally indicate *how many’ there are in the
collection. This experience gives us an intuition about an unending
sequence of numbers which can be used to count in this way any finite
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collection of objects. It is assumed that the readers of this book will
have a well-developed intuition about natural numbers, so we shall not
go into the psychology behind it (this is not to imply that the psychology
of mathematical intuition is not worthy of study — just that it is outside
the scope of this book).

Notation The set of natural numbers will be denoted by N.
N is the collection {0, 1, 2, ...}. Notice that we include 0 in N. This is
merely a convention. It is common but not universal.
Let us list some properties of these numbers which accord with
intuition.

Examples 1.1

(a) There is an addition operation (a two-place function on N) which
is commutative and associative.

(b) O0+n =n, forevery n eN.,

(c) Inthelist {0, 1, 2, .. .}, the number following n is n + 1, for each
n.

(d) n+1#n,foreveryneN.

() m+1=n+1implies m = n, for every m, n eN.

(f) There is a multiplication operation (also a two-place function
on N) which is commutative and associative, and which dis-
tributes over addition.

(g Oxn=0,and 1 xXn =n, for every n eN.

(h) m Xn =pXxn implies m = p, for every m, n, peN (n #0).

» Clearly, we can continue writing down such properties indefinitely.
These are the kind of things we learn in elementary school. We learn
them, discover that they work, and come to believe them as truths which
do not require justification. However, the mathematician who is working
in the theory of numbers needs a starting point in common with other
mathematicians. Peano’s axioms (listed first in 1888 by Dedekind, and
not originating with Peano) are such a common starting point. They are
five basic properties, all of them intuitively true, which serve as a basis
for logical deduction of true theorems about numbers. They are as
follows.

(P1) There is a number 0.

(P2) For each number n, there is another number n' (the successor

of n).
(P3) For no number n is n’ equal to 0.
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(P4) If m and n are numbers and m' =n’, then m = n.
(P5) If A is a set of numbers which contains 0 and contains n' for
every n € A, then A contains all numbers.
(Note that we have used the word ‘number’ here as an abbreviation for
‘natural number’.)

Remarks 1.2

(a) (P1) and (P2) provide the process for generating the sequence
of natural numbers corresponding to the intuitive counting pro-
cedure. (P3) reflects the fact that the sequence has a beginning.

{b) (P4)is a more complicated property of the sequence of numbers:
different numbers have different successors.

(¢) (P5) is the principle of mathematical induction. This is the most
substantial of the five, and is the basis of most proofs in elemen-
tary number theory. It may be more familiar as a method of
proof rather than an axiom, and in a slightly different form: if
P(n) is a statement about a natural number n such that P(0)
holds, and P(k + 1) holds whenever P(k) holds, then P(n) holds
for every natural number n. This can be seen to be equivalent
to (P5) if we think of the set A and the statement P(n) related
by:

n € A if and only if P{n) holds.

Thus, given a set A, a statement P(n) is determined and vice
versa.

» There is no mention in Peano’s axioms of the operations of addition
and multiplication. This is because these can be defined in terms of the
other notions present.

The common starting point, therefore, need not mention these oper-
ations. However, it is quite difficult to carry out the procedure of defining
them and justifying their existence (see Section 4.3) and, for our present
purposes, it is certainly unnecessary. For our purposes we can broaden
the common starting point, that is to say, we can include amongst our
basic intuitive properties the following.

(A) There is a two-place function (denoted by +) with the properties:

m+0=m, foreverynumber m.

m+n'=(m+n), forall numbersm, n.
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(M) There is a two-place function (denoted by X) with the properties:
mx0=0, foreverynumber m.
mXn'=(mxn)+m, forall numbers m, n.

(Following the usual mathematical practice we shall usually omit multi-
plication signs, and write mn rather than m X n. The exceptions will be
when special emphasis is being placed on the operation of multiplication.)

We could also include amongst our basic intuitive properties the
assertions that these operations satisfy the commutative, associative and
distributive laws, but it is not difficult to prove, from the properties given
above, that these hold. Let us carry out one such proof, as an example.

Theorem 1.3
Addition on N is commutative.

Proof
This is an exercise in proof by induction. We require two
preliminary results:
(i) O+m=m, forallmeN.
(i) m+n=(m+n), forallm,neN.

For (i), we use induction on m. By property (A) we have 0+0=0.
Suppose that O0+k =k. Then 0+k'=(0+k) =k’ (using property (A)
agai).

Hence, by the induction principle, O+ m = m holds for all m eN.

For (ii), we apply (P5) to the set

A={neN:m'+n=(m+n), forevery m eN}.

First, 0 € A, since m'+0=m' (by property (A)) and (m +0)' = (m)' (again
by property (A)), andso m’+0 = (m + 0)', for any m € N. Second, suppose
that k€ A, i.e. m'+k =(m+k) for every meN. Then

m+k'=(m'+k) (by property (A)),
=((m+k)Y (by our supposition that k € A),
=(m+k') (by property (A)).

This holds for every m €N, so k'€ A. We can therefore apply (PS5) to
deduce that A =N, i.e., (ii) holds for all m, n e N.

Now to complete the proof of the theorem we need a further induction.
Let B be the set {n eN:m +n = n +m, for every m e N}.
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First, Oe B since m +0=m (by property (A)), and 0+m =m (by (i)
above). Second, let us suppose that k € B, i.e., m + k = k + m for every
m eN. Now

m+k'=(m+k) (byproperty (A)),
=(k+m) since ke B,
=k'+m (by (ii) above).

This holds for every m €N, so k'€ B. Applying (P5) to B we conclude
that B=N,i.e. m+n=n+m forall m, n eN.

» It is not our purpose to develop elementary number theory, but there
are some basic results which we should at least mention.

Remark 1.4
For every natural number n, either n =0 or n =m’' for some
natural number m.
This may be proved using Peano’s axioms. It is left as an exercise for
the reader, with the hint that (P5) should be applied to the set A =
{n eN:either n =0 or n = m' for some m e N}.

Theorem 1.5
Every non-empty set of natural numbers has a least member.
Before we prove this we require to give an explanation of the term
‘least member’. Again this is an intuitive notion, but its properties can
be derived from the definitions and properties of numbers already given.
For m,neN we write m <n if there is x €N, with x #0, such that
m +x = n. {(We also use the notation m < n, with the obvious meaning.)
A set A of natural numbers has a least member if there is an element
m € A such that m <n for every other element n € A. The result of
Theorem 1.5 is intuitively true when we think of the normal sequence
{0, 1, 2, .. .} of natural numbers and note that the relation < corresponds
to the relation ‘precedes’.

Proof (of Theorem 1.5)

Let A be a set of natural numbers which contains no least
member. We show that A is empty. We apply (P5) to the set B=
{xeN:x=n for every ne A}. Certainly 0€ B, since 0=<n for every
n € A. Suppose that k € B. Then k <n for every n e A. But k cannot
belong to A, since if it did it would be the least element of A. Hence
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k <n for every n € A, and consequently k+1=<n for every n€ A, i.e.
k+1e B. By (P5), then, we have B =N. By the definition of B, this
means that x < n holds for every x e Nand every n € A. This is impossible
unless A is empty, in which case it is vacuously true. The proof is now
complete.

» The above theorem can be used to justify a slightly different version

of the principle of mathematical induction.

(P5*) If A is a set of natural numbers which contains 0 and contains
n' whenever 0,1,...,n all belong to A, then A contains all
natural numbers.

Theorem 1.6
(P5*) holds (as a consequence of (PS), through Theorem 1.5).

Proof

Let AN, with 0e A and such that n’€ A whenever O, 1, ...,
n e A. We require to show that A =N, Consider the set N\A (the set of
all elements of N which do not belong to A). Suppose that N\A is not
empty. Then by Theorem 1.5 it contains a least member, n,, say. We
have therefore no# A, and x € A for every x with x <ng. Now ng#0,
since 0 € A, by our original hypothesis. Hence, no = m’' for some meN
{by the result of Remark 1.4). So we have m’£ A, but we have also 0,
1, ..., me A. This is a contradiction since our hypothesis says that we
have n'e A whenever 0, 1, ..., n € A. It follows that N\A is empty, and
consequently A =N.

» The last of our basic results is one that we shall refer to when we
discuss properties of the other number systems. It is the result which is
commonly known as the division algorithm. Its proof is given here for
the sake of completeness, and the reader may omit it.

Theorem 1.7
LetaeN, beN, b #0. There exist g €N, reN with

a=qgb+r and r<b.

Moreover, the numbers g and r are uniquely determined.

Proof
Let S={yeN:y+xb=a, for some x eN}. (§ may be thought
of as the set of differences a —xb for all those x e N such that a = xb.)
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S is not empty, since a € § (corresponding to x = 0). Hence, by Theorem
1.5, S contains a least element, say 7. Since r € S, there is g €N such that
r+qb=a,i.e. a=gqb+r. We must have r < b, for otherwise b <r, so that
r=>5b+ry, say, with r; €N, and r, <r, necessarily. Then r+gb = a gives
r+b+qgb=a, ie. ry+{(q+1)b=a, and this implies that r,€S. This
contradicts the choice of r as the least element of S.

It remains to show that g and r are unique. Suppose that a =gb +r =
q'b+r', with r<b, r'<b, and r=<r', say. Then there is €N such that
r+t=r',andwehave gb +r=q'b+r+t and hence gb = q'b + t. It follows
that g¢'b=<gb, so q¢'<q. Let g =q'+u, say, with ueN. Then q¢'b+ub =
gb=q'b+t, giving ub=¢ Since r+t=r", then, we have r+ub=r"
Consequently ub <r', which contradicts r'<b, unless u =0. Thus we
must have u =0, and this implies that r = /', r = 0, and g = q', as required.

In the above proof we have used, besides Theorem 1.5, a few proper-
ties of addition, multiplication and inequalities which have not been
explicitly derived from our basic assumptions. The most apparent, per-
haps, is the cancellation law for inequalities: if ax < bx and x # 0, then
a < b. This may be treated as an exercise.

» Natural numbers are a product of intuition. There is no need for a
mathematical definition of natural numbers. Peano’s axioms may be
seen as an attempt to define, but they are in fact merely an attempt to
characterise natural numbers. But immediately two questions arise. First,
are Peano’s axioms true of our intuitive natural numbers? And second,
is there any collection of objects, essentially different from the set of
natural numbers, for which Peano’s axioms also hold true? The answer
to the first question is clearly (intuitively) in the affirmative. The answer
to the second is much harder to find, for it involves the mathematical
abstractions: ‘collection of objects for which Peano’s axioms hold
true’, and ‘essentially different’. We shall see in due course that the
second answer is negative, but before that we must explain the
abstractions.
Consider the set 2N = {27 : n € N} of even natural numbers, and denote

k +2 by k*, for each k € 2N. Then the following are true:

(1) 0e2N.

(2) For each ke 2N, k*e2N.

(3) For no k2N is k* equal to 0.

(4) If k, 1 €2N, then k* =1*,

(5) If A<2N is such that 0 A and k*c A whenever k € A, then

A =2N,
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In other words, Peano’s axioms ‘hold’ for the set 2N (together with the
operation *), It is not difficult to conceive of other structures (i.e. sets
together with unary operations) for which Peano’s axioms also hold. We
can say precisely what this means in general.

Definition
A model of Peano’s axioms is a set N, together with a function
f and an object e (a triple (N, f, e)) such that
(P1*) eeN.
(P2*) The domain of f is N, and for each x e N, f(x)e N.
(P3*) If xe N, then f(x)#e.
(P4*) If x,ye N and f(x)=f(y), then x = y.
(P5*) If A is a subset of N which contains ¢ and contains f(x) for
everyx€ A, then A=N.
The function f is to act like the successor function and e is to act like
0. The reader should compare these conditions (P1*), . . ., (P5*) carefully
with (P1), ..., (P5).

» The model (2N, *, 0) given above, by its very existence, tells us that
Peano’s axioms do not characterise the set of natural numbers uniquely.
But this new model has a structure which is identical to the structure of
(N, ’, 0). The two models are isomorphic, that is to say there is a bijection
¢ :N->2N such that ¢(n')=(e(r))* for all neN, and ¢(0)=0. (The
function ¢ is given by ¢ (n) = 2n.) In general we can make the following
definition.

Definition
Two models (N, fi, ¢1) and (N>, f2, e2) of Peano’s axioms are
isomorphic if there is a bijection ¢ : N1 > N, such that

i) e(filx))=fe(x)), forallxeNy,
and
(il) ¢ler)=eo.

Such a function is said to be an isomorphism.

» Models of Peano’s axioms exist which are different from, but isomor-
phic to, (N, ', 0). Mathematically, such models are essentially the same,
and for mathematical purposes it really does not matter whether natural
numbers are taken to be the elements of N or the elements of a different
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but isomorphic model. This will form the basis of our construction of
natural numbers within set theory in Section 4.3. In a sense it is only a
matter of labelling. If two models are isomorphic then their mathematical
characteristics are the same but their elements may be objects of different
sorts.

What makes the overall situation sensible, however, is the result of
Corollary 1.9 below. It implies that there is no model of Peano’s axioms
which is not isomorphic to (N, ', 0). In other words, Peano’s axioms do
characterise the structure of (N, ’, 0) completely.

Theorem 1.8 (definition by induction)

Let (N, f, e) be any model for Peano’s axioms. Let X be any
set, let a € X and let g be any function from X to X. Then there is a
unique function F from N to X such that

F(e)=a,
and

F(f(x))=g(F(x)), foreachxeN.

» Theorem 1.8 legitimises what is probably a familiar process for
defining functions with domain N. This process was used on page 4
above in the properties (A) and (M). First specify the value of F(0), and
then, on the assumption that F(n) has been defined, specify F(n +1) in
terms of F(n). Here, of course, we are dealing with an arbitrary model
of Peano’s axioms, rather than N. The proof of Theorem 1.8 is lengthy
and technical, so we shall omit it at this stage. Theorem 4.15 is a particular
case of Theorem 1.8, concerning that model of Peano’s axioms (the set
of abstract natural numbers) which is constructed in Section 4.3. The
proof given there can be generalised in a straightforward way to apply
to an arbitrary model, as required here.

Corollary 1.9
Any two models of Peano’s axioms are isomorphic.

Proof
Let (Ny, f1, e1) and (N>, f, €>) be models of Peano’s axioms. By
Theorem 1.8, there is a unique function F: N; - N, such that

Fley)=e,
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and
F(fi(x))=f2(F(x)), foreachxeN;.

This function F thus satisfies conditions (i) and (ii) required by the
definition of an isomorphism. It remains only to prove that F is a
bijection. Now applying Theorem 1.8 with N and N, reversed will yield
a unique function G : N; > N, such that

Glex)=e,
and

G(fa(y)) =f1(G(y)), foreachyeN,.

We show that G(F(x))=x for every x € N;, by application of (P5%*) to
(N1, fi,e1).Let A={xeN,: G(F(x))=x}. Then e, € A, since G(F(e;)) =
G(e;)=e,. Let x € A. Then G(F(x)) = x, so that

G(F(f1(x) = G(f2(F(x))) = fL(G(F (x))) = f1(x),

and consequently f;(x) € A. It follows, by (P5*), that A = N;. Likewise,
we can show that F(G(y))=y for every y e N,. Hence, F and G are
bijections (and are inverses of each other) and the proof is complete.

» The concept of a model of Peano’s axioms which is different from,
but isomorphic to, (N, ’, 0) is the first stage of mathematical abstraction.
Similar abstractions are made in the constructions of the systems of
integers, rational numbers, real numbers and complex numbers. These
constructions start from the basis of natural numbers and proceed using
standard algebraic processes, but in the end they produce sets of math-
ematical objects which are exceedingly complex in themselves, but which
have the necessary properties characterising the number systems in
question. What are negative integers? There are some people who argue
seriously that they do not exist. But they certainly exist for the
mathematician. The mathematician can construct, using his abstract
methods, a set which has the properties that the set of integers ought
to have, starting from N. We now proceed to do this in some detail.
Rationals, reals and complexes will follow.

The way to construct the set of integers is to regard it as the set of
all differences between ordered pairs of natural numbers. For example:

(2,3) givesriseto—1,
(3,2) givesriseto 1,

(5,31) givesrise to —26, etc.
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Notice the significance of the order of the two numbers in the pair. The
first problem is that different ordered pairs can give rise to the same
integer, for example: (2, 5) and (7, 10) both give rise to —3. Thus we
cannot define integers to be ordered pairs of natural numbers. What we
do is take the collection of all ordered pairs (m, n) with n—m =3 to
represent the integer —3. We do this via an appropriate equivalence
relation, for which the above collection (and all other similarly defined
collections) are equivalence classes.

(An equivalence relation on a set X is a binary relation on X which
is reflexive, symmetric and transitive. The property which we use is that
an equivalence relation gives rise to equivalence classes. An equivalence
class consists of all elements of X which are related to a given element.
Each element of X determines (and belongs to) one equivalence class.
Indeed, X is partitioned into disjoint equivalence classes. We shall
mention equivalence relations again in Section 3.1, with more details
of the definition. Any standard text on beginning abstract algebra will
provide further details if required.)

Now for the formal details of our construction of the integers.

Definition

Let a, b, ¢, d e N. We say that (a, b) is related to (¢, d), written
(a, b)O(c, d), if a+d = b +c. (Notice that we are unable to write ‘a — b =
¢ —d’ as we might have wished, because until we have defined negative
numbers, differences of natural numbers may not exist.)

Now < is an equivalence relation. This is easily verified. For any pair
(a, b) of natural numbers, a+b=5b+a, so (a, b)O(a, b), and O is
reflexive. If (a,b)O(c,d) then a+d=b+c, so c+b=d+a, ie.
(c, d)O(a, b), and < is symmetric. Lastly, if (a, b)$(c,d) and
(c, d)Ole, f),thena+d=b+c and c+f=d +e. We have

a+f+d=a+d+f
=b+c+f
=b+d+e

=b+e+d,

and consequently a +f=b +e¢, so that (a, b) O (e, ), as required to show
that < is transitive.

We define integers to be equivalence classes under the relation . As
an example, the set {(a, b):a+1=>5} is an equivalence class (it is the
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class determined by (0, 1)), and we are defining the integer —1 to be
this set. However, we shall not use normal notation for integers yet.

Let us denote the equivalence class determined by (a, b) by (a, b).
What we intend is that (a, #) should be the integer that we intuitively
think of as a — 5.

» All we have so far is a set. It remains to describe the operations of
addition and multiplication, to investigate the natural order of the
integers and to examine in what way the newly defined set of integers
‘contains’ the set of natural numbers. This last reflects the way that we
normally regard these sets —we do not normally distinguish between
natural numbers and non-negative integers.

Definition
Addition and multiplication of integers are defined as follows.
Leta, b,c,deN.

(a,b)+(c,d)=(a+c,b+d),
(a, b) X (c, d) = (ac + bd, ad + bc).

Remarks 1.10

(a) These definitions have an intuitive basis.
(a—b)+(c—d)=(a+c)—(b+d) lies behind the first.
(a—b)x{c—d)={(ac+bd)—(ad + bc) is the way to remember
the second.

(b) We are defining operations on equivalence classes. It is necessary
in such a situation to verify that the operations are well-defined.
We take the case of addition and leave multiplication as an
exercise. What we must verify is that if (4, b)=(p,q) and
(c,d)=(r,s), then (a+c,b+d)=(p+r,q+s) (i.e. that the
result of adding two classes does not depend on the pairs of
natural numbers which are chosen to represent them). Suppose
thata+qg=b+pand c+s=d+r. Then

(a+tc)+(g+s)=(a+q)+(c+s)
=(b+p)+{d+r)
=(b+d)+(p+r),

and consequently (a +c¢, b +d) = (p +r, q +s), as required.
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(¢) If (a, b) is an integer, and c €N, then (a +c¢, b +c)=(a, b). To
see this, just note that (a+c¢, b+¢)O(a, b), since (a+c)+b =
(b+c)+a.

(d) Tt is a straightforward exercise to verify that addition and
multiplication satisfy the commutative, associative and distribu-
tive laws.

(e) Notice that, for any a, beN,
(a, b) +(0, 0) = (a, b),
(a, b) (1, 0) =(a, b),
and
(a, b) x (0, 0) = (0, 0).
Thus (0, 0) behaves like zero, and (1, 0) behaves like 1.

(f) Forany a,beN,

(a, b)Y+ (b,a)=(0,0).

To see this, we need to observe that (a + b, a + b) = (0, 0), which

is a special case of the result that (m, m) = (0, 0), foreverym e N.
We write —(a, b) for (b, a), and we abbreviate (a, b)+

(—(c, d)) by (a, b)—(c, d). Thus we introduce subtraction as a

legitimate operation on integers.

Exercise

(—(a, b)) X (c, d) = —((a, b) x(c, d)),
(—(a, b)) x(=(c, d)) = (a, b) X (¢, d).

Notation
We denote the set of integers by Z, and we shall use variables
near the end of the alphabet for elements of Z (for the time being).

Definition

The order relation on Z is defined as follows. First we say that
an element (a, b) of Z is positive if b <a (as elements of N). Again it
must be shown that this is well-defined, i.e. that if (a, b) = (¢, d) and
b<athend<c. If a+d=>b+c and b <a then it certainly follows that
d <c. Z* denotes the set of positive integers. Now we define <, for
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x, y€Z by:
x<y ify-xeZ".
We shall also use the symbol =< (less than or equal to) with its normal

meaning.

Remarks 1.11

(a) Forx,y,zeZ wehave x<yifandonlyif x +z <y +2z.

(b) Forx,yeZand zeZ",wehave x <y ifandonlyif x Xz <y X z.

(c) ForxeZand yeZ", we have x <x +3y.

(d) fxeZ andyeZ ,thenx+yeZ".

(e) f xeZ andyeZ , thenxxXyeZ".

(f) f xeZ”, then —x <x.

(g) If xeZ", then (0, 0)<x.

(h) For any x€Z, (0, 0) <x’.
We sketch proofs for (a) and (e). The others are left as exercises.
For (a),letx=(a, b), y=(c,d), z = (e, f).

(y+2)-(x+2)=((c, d)+ (e, )~ (a, b) + (e, f))
=(c+e,d+f)—(a+e b+f)
=(c+e,d+f)+(b+f,a+e)
=(c+e+bt+f,d+f+a+e)
=({c+b)+(e+f),(d+a)+(e+f))
=(c+b,d+a)
=(c, d)+ (b, a)
=(c,d)—(a, b)
=y—x

Thus (y+2z)—(x+2)eZ if and only if y—xeZ", ie. x+2<y+2z if
and only if x <y.
For (e), let x =(a, b) and y = (¢, d), where b <a and d <c.

x Xy ={(ac+bd, ad + bc).
Now there exist p, g e N\{0} such that a=b+p and c =d +g¢, so
ac+bd=(b+p)d+q)+bd
=2bd + pd + bq + pq,
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and
ad+bc=(b+p)d+b(d+q)

=2bd + pd + bq.
Therefore ac + bd = ad + bc + pg, so that
ad +bc <ac +bd inN (see Exercise 4 on page 18),

and consequently x Xy e Z".

» The pattern that proofs take is well exemplified by the above. Results
about elements of Z are re-stated in terms of equivalence classes of
pairs of natural numbers and hence in terms of natural numbers them-
selves. Properties of N can then be used to justify properties of Z. Care
must be taken in such proofs to distinguish between elements of Z and
elements of N, and to make no assumptions about integers (and,
moreover, to avoid treating elements of N as integers).

The above is a temporary warning only, however. Once the properties
of integers have been derived from the properties of natural numbers,
we can forget the apparatus of the construction, and treat integers in
the intuitive way that we are accustomed to. Part of this intuition is the
idea that Nis a subset of Z, i.e. that natural numbers are just non-negative
integers. Our construction of Z renders this convenient idea false.
However, we may recover the situation by the following process.

Consider the set S of integers of the form (n, 0) (n e N). We have seen
that (0, 0) behaves like a zero. Let f:S—>S be given by f(n,0)=
(n+1,0). Then (S, f, (0, 0)) is a model for Peano’s axioms. This is left
for the reader to verify. Moreover, (S, f, (0, 0)) is isomorphic to (N, ’, 0),
by Corollary 1.9 (the isomorphism associates each n € N with (n, 0) € S),
and so S has the same mathematical structure as N. Addition and
multiplication bear this out, for we know that for m, n e N,

(m, 0) +(n, 0) =(m +n, 0),
and

(m, 0) X (n, 0) = (mn, 0).
Consequently, we can take the elements of § to represent the natural
numbers. This satisfies the formal mathematical requirements. In prac-
tice there is no need to do other than just imagine that N is a subset of

Z, in effect regarding n and (n, 0) as different labels for the same object.
From now on we actually do so. It should not lead to confusion.
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Theorem 1.12

Z* U{(0, 0)}, the set of non-negative integers, together with the
successor function f given by f(n, 0) =(n+1, 0) and the zero element
(0, 0), is a model for Peano’s axioms.

Proof

The set S in the above argument is just Z* U {(0, 0)}, so the
proof is described above. Notice that the non-negative integers thus
behave just as natural numbers do.

Theorem 1.13

(i) Given x € Z, we have one of the following: x€Z” or x =0 or
—xeZ".

(i) Ifx,yeZ ,thenx+yeZ and xxyeZ".

Proof
(i) Let x =(a, b). If a=»5 then (a, b)=(0, 0) and so x =0. Now
suppose that a # b. The set {a, b} is a non-empty subset of N, so
contains aleast member. If the least memberis a, thena <b.If the
least member is b then b < a. In the former case we have —x € Z~,
since —x = (b, a). Inthe latter case we have x € Z . This proves (i).
(ii) These have already appeared as Remarks 1.11 (d) and (e).

» Our purpose here has been to develop the set Z of integers, and
derive its basic properties, from our chosen starting point. This we have
now done, and having done so we should forget the apparatus of the
construction.

Our procedure merely gives a mathematical way of relating the set
of integers to the set of natural numbers, and a demonstration that there
is no need to make intuitive assumptions about integers, since our basic
assumptions about natural numbers already implicitly contain the stan-
dard properties of integers.

With this in mind, from here on integers will be integers and natural
numbers will be non-negative integers. The next stage in our develop-
ment is a very similar construction, the construction of the set of rational
numbers.

Exercises

1. Using (PS), prove the following: if P(n) is a statement about the natural
number n such that P(0) holds and P(n’) holds whenever P(n) holds,
then P(n) holds for every natural number n.
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2. Verify that addition on N is associative.

3. Verify that multiplication on N is commutative and associative and that
the usual distributive law holds.

4. Prove that for every natural number #, either n =0 or n = m’ for some
natural number m. Hence, show that the product of two non-zero
natural numbers is non-zero.

5. Prove that for every pair of natural numbers m and n, either m < n or
n=m.

6. Let m, n e N, with m # 0. Prove that there exists r € N such that n < rm.
(Hint: use Theorem 1.7.)

7. Show that multiplication of integers is well-defined, i.e. that if (a, ) =
(p, q) and (¢, d) = (r, s) then (ac + bd, ad + bc) = (pr+gs, ps +qr).

8. Verify the commutative, associative and distributive laws for addition
and multiplication on Z.

9. Prove Remarks 1.11(b), (c), (d), (f), (g} and (h).

10. Let a be a fixed element of Z. Let A be a subset of Z such thatae A
and x +1€ A whenever x € A. Prove that {x e Z:a sx} < A.

11. Prove that every non-empty set of integers which is bounded below
has a least element.

12. Prove that every non-empty set of integers which is bounded above
has a greatest element.

13. Prove that for any pair of integers a and b, eithera<b or b <a.

14. Let x, y € Z be such that xy = 0. Prove that x =0 or y = 0.

1.2 Rational numbers

There are four standard arithmetic operations: addition, sub-
traction, multiplication and division. In N only the first and third are
permitted in general, since it need not be the case, for natural numbers
a and b, that a —b or a/b are natural numbers. The set Z of integers
is such that subtraction is permitted, but it is still the case that division
may not work in Z. Just as we took differences of natural numbers to
represent integers, here the essence of the process is to use ordered
pairs representing quotients. The standard way of representing rational
numbers is as quotients of integers. Of course, the same rational number
may be represented thus in many different ways. Consequently, in our
formal procedure, the pairs (2, 3), (8, 12), (=50, —75) and (1000, 1500)
will all represent the same object. This makes sense intuitively if we
think of them as representing the familiar object 2/3. The formal details
are similar to those of the earlier construction of the integers.

Definition
Let a, c €7, and let b, d € Z\{0}. We say that (a, b) is related to
(c, d), written (a, b) #(c, d), if ad = bc. (Notice that this expresses what
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we would like, namely a/b = c/d, but as yet we cannot write fractions
since we do not have a division operation on Z.) Intuitively we have
(a, b)# (c, d) if a/b and c/d represent the same rational number.

Now # is an equivalence relation. First, for any a, b € Z with 5 # 0,
we have ab = ab, so {a, b)# (a, b), and so # is reflexive. Second, suppose
that (a, b) # (¢, d), so that ad = bc. Then cb = da clearly, so (¢, d) #(a, b),
and we have shown that # is symmetric. Third, suppose that {a, b) # (¢, 4)
and (c, d) # (e, f), where a, c,e € Z and b, d, f € Z\{0}. Then ad = bc and
¢f = de. We have

afd = adf = bcf = bde = bed,

so since d # 0 we can deduce af = be. Hence, (a, b) # (e, f) as required
to show that # is transitive.

We define the set of rational numbers to be the set of equivalence
classes under #. As an example, the set {(a, b):a,beZ, b #0, b =2a}
is an equivalence class (it is the class determined by (1, 2)).

Let us denote the equivalence class determined by (a, b) by a /b. What
we intend is that a /b should be the rational number that we intuitively
think of as a/b.

» Our exposition has been deliberately modelled on the previous
description of the construction of the integers, so as to emphasise the
analogy. In algebraic terms, the construction of the integers involved
introducing ‘additive inverses’ for the natural numbers (namely, negative
integers), and now the construction of the rational numbers involves the
introduction of ‘multiplicative inverses’ for the non-zero integers. In this
case, of course, we must also introduce other new objects; besides
requiring rational numbers of the form 1/b(be Z, b #0) we also have
rationals of the form a/b which cannot be reduced (by cancellation) to
a fraction with numerator 1.

Again, all we have so far is a set. It remains to describe the operations
of addition and multiplication (and subtraction and division), to investi-
gate the natural order of the rational numbers, and to examine the way
in which the newly-defined set of rational numbers contains the set of
integers.

Definition
Addition and multiplication of rational numbers are defined as
follows. Let a, b,¢c,de Z, with b #0, d # 0.
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(a)

(b)

(c)

(d)

Numbers

a/b+c/d=(ad+bc)/bd,
a/bxc/d=ac/bd.

Remarks 1.14

The above definitions reflect our intuitive basis for rational
numbers. We think of

_ad+bc

a.c ac
b d  bd

a_c
_X_ .
b d bd

and

We must verify that these operations are well-defined. This time
we take the case of multiplication and leave addition as an
exercise. Suppose thata/b =p /q andc /d =r /5. We must show
that ac/bd =pr/qs, i.e. that (ac, bd)# (pr,qs), i.e. that
acqs = bdpr. Now we have supposed that a/b=p/q, and
consequently that ag = bp, and similarly we have ¢s = dr. Thus

acqs = aqcs = bpdr = bdpr,

as required.

If a/b is a rational number, and x is a non-zero integer, then
ax /bx = a/b. To see this we just note that (ax, bx)# (a, b}, since
axb = bxa.

Addition and multiplication of rational numbers are commutative
and associative, and the distributive law holds. These results are
easy consequences of the corresponding properties of integers. To
illustrate, let us take the distributive law. Let a, b,¢, d, e, fe Z,
with b #0,d #0,f#0.

(a/b)x(c/d+e/f)
= (a/b) < ((cf +de)/df)
=a(cf+de)/bdf
= (acf +ade)/bdf.
Also
(afbxc/d)+(afbxe/f)
= (ac /bd)+ (ae /bf)
= (acbf +bdae) /bdbf



